Layout Design For Signaling

©2015, Rodney Black

http://home.comcast.net/~kb0oys

July 11, 2015

8/21/2015

Download This Presentation

Documentation

Each of the programs has a user manual/guide. The manuals for designer and CATS are included the release 20xx zip file. The manual for TrainStat is included in the TrainStat zip file.

In addition, I have posted links to the PowerPoint presentations I gave at the 2010, 2011, and 2014 NMRA National conventions and the 2013 NMRA RMR convention: wiring clinic, panel building clinic, magnet board example, and CTC example, RMR 2013 clinic, National 2014 clinic.

Outline

- 1. Why Signal a Layout
- 2. How the Prototype Uses Signals
- 3. Signal Placement and Control Basics
 - a. Automatic Block Signals (ABS)
 - b. Absolute Permissive Signals (APB)
 - c. Centralized Traffic Control (CTC)
 - d. Train Order Board
- 4. Right of way issues

Disclaimer: much of this clinic is based on panel discussions from pervious conventions and an excellent paper by Seth Neumann and Byron Henderson

Why Signal a Layout

Signals add

- Color and Animation make the layout come alive
- Realism set the layout in time and(possibly) space
- Operating interest mimic the prototype
- Functionality provide safety for trains and control movement

They are cool!

Layout Signals

- Cosmetic (dummy)
- Semi-functional
- Fully functional on layout
- Fully functional with or through repeaters

Prototypical Signals on Layouts

Every railroad had unique signal systems.

- Research your prototype
- If free lancing, there is probably an example
- This clinic will address generic concepts

How the Prototype Uses Signals

- 1. Train order boards
- 2.Safety overlay
- 3.Interlocking plants
- 4. Traffic control

Nomenclature

- 1. Aspect how the signal appears in the field (e.g. "red")
- 2. Name the name of the indication (e.g. "Clear")
- 3. Indication the meaning of the signal how the crew should respond (e.g. "Proceed prepared to stop at second signal")
- 4. Route signals the indication shows the path through a plant
- 5. Speed signals the indication shows the safe speed for the train before the next signal

Signals are about Safety

- Prevent a train from running into something
- Prevent a train from running off the rails
- Provide a train time (distance) to stop or adjust speed
- Facilitate movement

Basic Aspects and Indications

ATSF example

http://www.railroadsignals.us/rulebooks/cora/cora1.htm

Layout Design Considerations

- Placement
- Functionality
- Layout requirements
- Where appropriate

Train Order Boards

- Signals at manned stations
- Operator transcribes orders from a dispatcher, delivers them to the train crew, and reports train arrivals to the dispatcher
- The board appearances were quite unique for railroad, era, and location
- Simple on/off
- Appropriate for TT&TO

http://www.railroadsignals.us/rulebooks/ALLaspects.pdf (Todd Sestero)

Train Order Boards

8/21/2015 Layout Design for Signaling 13

Safety Overlay (Automatic Block System)

- Electronic checking to prevent trains from running into each other
- Alternative to Rule 99 ("Flag protection required against following trains on the same track")
- Unbonded (undetected) sidings
- Augments track occupancy authorization (except for some roads)
- Appropriate for all operating schemes (TT&TO, DTC, TWC, CTC)

Safety Overlay (Automatic Block System)

Safety Overlay (Automatic Block System)

Signals show condition of track to next signal – not authority to occupy track Uni-directional: Indications travel opposite train direction

Jay S. Boggess

If block is occupied then red Else if next signal red then yellow Else green

Occupancy Detection

Block detection (e.g. coil, diode voltage drop)

Point detection (e.g. photo, magnetic reed switch)

- Solid no blinking
- Accurate no misses, no false reports

8/21/2015 Layout Design for Signaling

Point Detectors

Pros

- No equipment modification
- Precise location determination
- No track gaps

Cons

- Precise location determination
- Sensitive alignment
- Trains must be longer than longest distance between detectors

8/21/2015 Layout Design for Signaling 18

Block Detectors

Pros

- Prototypical
- Covers an area
- Effective

Cons

- Gap tracks
- Rolling stock modifications (metal resistor wheels)
- Shortest block must be longer than longest distance between two resistor wheels
- Dirty track/wheels do not detect

Place gaps at signals

Implementing ABS

- Power not shown
- Custom boards (FPGA)
- January 1992 MR
- Inexpensive
- No PC
- Approach lighting?

- Power not shown
- Commercial boards
- Flexible
- JMRI
- Chubb (chapter 19)

20

Safety Overlay (Bi-directional ABS)

Does not protect well against opposing movement

Safety Overlay (Absolute Permissive Blocks)

- Electronic checking to prevent trains from running into each other – "siding to siding protection for opposing moves and signal to signal protection for following moves"
- Alternative to Rule 99 ("Flag protection required against following trains on the same track")
- Unbonded (undetected) sidings
- Augments track occupancy authorization (except for some roads)
- Appropriate for all operating schemes (TT&TO, DTC, TWC, CTC)

Safety Overlay (Absolute Permissive Blocks)

Safety Overlay (Absolute Permissive Blocks)

Interlocking Plants

- Protect crossings and junctions
- Protecting multiple routes multiplies the complexity
- Appropriate for TT&TO and TWC, as well as CTC
- CTC can be as simple as remote controlled interlocking plants connected by dark territory or safety overlay

Interlocking Plants

Interlocking because

- 1. Opposing Signal Lock a signal cannot clear if an opposing signal is cleared
- 2. Conflicting Signal Lock a signal cannot clear if a conflicting signal is cleared
- 3. Indication (Route) Locking a cleared signal will lock a switch
- 4. Switch Indication Locking a signal cannot clear through a fouling switch
- 5. Detection Locking a switch is locked if the track circuit is occupied

- 2. Signals at points (opposing signal lock)
- 3. Pair up signals (detection)

"Introduction to North American Railway Signaling"

Routes

- 1. A2T→A8T
- 2. A8T→A2T
- 3. A4T→A10T
- 4. A10T→A4T
- 5. $A4T \rightarrow A3T \rightarrow B3T \rightarrow A8T$
- 6. $A8T \rightarrow B3T \rightarrow A3T \rightarrow A4T$
- 7. $A6T \rightarrow 5T \rightarrow A10T$
- 8. A10T \rightarrow 5T \rightarrow A6T

- Place signals on perimeter
 Add interior track circuits for
- Add interior track circuits for parallel routes

Routes $. 1 \rightarrow 2$ $. 2 \rightarrow 1$ $. 1 \rightarrow 3$

 $3\rightarrow 1$

 $1\rightarrow 4$

Centralized Traffic Control (CTC)/ Traffic Control System (TCS)

- Eliminates manned stations
- Allows fine control (micro-managing) traffic flow
- Control points (security elements, OS sections) are like simple interlocking plants
- Control points are linked with safety overlays
- Extension of safety overlay "Proceed on signal indication"

Example CTC Control Point

Control Point Schematic

Prototype CTC Architecture

Dispatcher Control with CTC (Alternative 1)

Dispatcher Control with CTC (Alternative 3)

Overlapping Protection

More Complicated Indications

- Add second "arm" (head)
- Account for next signal being green, yellow, or red
- Excluding high speed turnouts, route based signaling is similar to speed based signaling

9.57	DIVERGING CLEAR	Proceed on diverging route not exceeding prescribed speed through turnout.
9.58	DIVERGING APPROACH	Proceed through diverging route; prescribed speed through turnout; approach next signal preparing to stop, if exceeding 40 MPH immediately reduce to that speed.

http://www.railroadsignals.us/rulebooks/cora/cora1.htm

Even More Complicated Indications

Advance signals are railroad specific!

http://www.railroadsignals.us/rulebooks/cora/cora1.htm

Turnouts (Points, Switches)

Turnout Taxonomy

- 1. Manual signals drop when points move by trainman
- 2. Automatic Electrical signals drop when turnout is "unlocked" by trainman
- 3. Controlled Electrical dispatcher unlocks turnout, trainman operates
- 4. Dual control dispatcher can unlock and move points; trainman can move unlocked turnout

CTC Signal Indication Dependencies

- 1. Occupancy of protected track circuit(s)
- 2. Next (advance) signal indication in direction of travel
- 3. Next (advance) signal indication in opposing direction of travel
- 4. Conflicting signal indications
- 5. Alignment of protected turnouts
- 6. Lock/unlock status of protected turnouts
- 7. Occupancy of track circuits(s) in approach
- 8. Other things (e.g. slide fence, draw bridge)
- 9. Dispatcher/Towerman actions

CTC Connections

Signals show authority to occupy track

Indications travel opposite train direction; Tumbledown travels in train direction

DOT is Direction of Travel (Traffic Stick)

Computer is essential for dispatcher interface

Different ways of implementing intermediates

Implementation:

- Chubb chapters 21-25
- JMRI
- CATS

CTC Implementation

Right of Way Issues

- 1.Clearances NMRA gauge and actual for equipment
- 2.Support structures (switch machines, equipment sheds, etc.)
- 3. Telephone/code poles, lines, signs, access roads
- 4. Distance between signals how long is a block?
- 5. Protection from damage

Right of Way Issues - Clearance

Right of Way Issues - Clearance

Right of Way Issues - Details

Right of Way Issues - Protection

References

- •<u>Introduction to North American Railway Signaling</u>, Institution of Railway Signal Engineers, ISBN 0-911382-55-0, 2009
- •Railroader's C/MRI Applications Handbook, Volume 2 Signaling Systems, Bruce Chubb, 2010
- "Absolute-Permissive Block Signals", Jay S. Boggess, Model Railroading, January, 1982
- •"Introduction to Signals for Your Model Railroad", Seth Neumann,

http://www.x2011west.org/handouts/Planning-for-Signals.pdf

- •JMRI, jmri.org
- "Practical Guide to Railway Engineering", American Railway Engineering and Maintenance of Way Association (AREMA), 2003 (on the Internet)
- "The Rule 281 Series, Volume 1 CTC Machine Operation", Mike Burgett, <u>www.ctcparts.com</u>